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Abstract-A constitutive equation for an incompressible. isotropic. nonlinear viscoelastic solid of
differential type. a class which includes the Voigt-Kelvin solid of classical linear viscoelasticity. is
applied to study the quasi-static response of the material in a simple shearing deformation super
imposcd on a given static homogeneous strain. The Cauchy stress is determined and general relations
that characterize crecp and recovery phenomena are obtained. Specific equations are derived for a
viscoelastic Mooney-Rivlin model. Then the finite amplitude. damped. free vibration of a rigid
hody supported symmetrically by viscoelastic Mooney-Rivlin shear mountings is ellamined. and
solutions arc gillen for heavily damped and lightly damped motions. The elT~'Cts of the primary
stOltic deformOltion on creep and recovery phenomena of the shear blocks. and its elT~'Cts on the
frelluency. damping. and logarithmic decrement characteristic of the motion .m: described ana
lytically and illustrated graphically. EITects of the ultimate equilibrium shear induc~'d by the h'ad
Ollso 'Ire described. Universal frequcncy .lI1d damping relations for ViSWelOlSlic Mooney··Rililin and
nco-I h'oke'lI1 models arc noted. It is shown thai the primary homogeneous deformation plays an
important role in deterrninalion of all aspects of the mechanical response. General equations for
the eXOlct solution of the problem for free vibrations of a 100ll! on nonlinear. pcrfL'Ctly e10lslie sheOlr
mountings Ollso arc provided.

I. INTRODUCTION

Engineering applications of shear mountings are well-known. Specific examples. including
the clfects of she;tr in biological members. have been described in several recent papers by
Beatty (1984. 1988. 1989a). Beatly and Bhatlacharyya (1989). and Bhattacharyya (1990).
These studies have yielded a variety of physical results which have shown th;tt a simple
shear model provides significant mathematical simplicity in the study of finite amplitude
vibrations of a load supported by rubber shear springs. Various. rather general situations
have been investigated.

The undamped. large amplitude. periodic free vibration of a load supported sym
metrically by arbitrary isotropic elastic shear mounts has been studied by Beatty (1988). [t
is assumed only that the shear response function is a positive. even function of the amount
of shear. When the shear response function is a constant. it is found that the finite motion
of the load is always simple harmonic. The Mooney-Rivlin. Hadamard. and Blatz-!<o
models arc examples for which this result holds. Otherwise. the frequency is amplitude
dependent. This was illustrated exactly in application to a class of hyperelastic biological
tissues. An approximate frequency/amplitude relation was obtained for a soft tissue whose
shear response is a quadratic function of the amount of shear. However. for the same
problem. the exact solution in terms of elliptic functions may be read from the general
result derived earlier for a certain class of rubber-like quadratic materials (Beatly. 1984).
This class includes the aforementioned special models having a constant or a quadratic
shear response function in a simple shear deformation. The general model explored by
Beatty (1988) was subsequently applied to study the stability of the oscillatory motion of
a load attached by simple shear mountings to a steadily rotating vehicle (Beatty. 1989a).
General conditions for stability are described in simple physical terms: but study of the
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nature of the mechanical response in special cases would depend upon the particular form
of the shear response. The rich variety of results possible in specific cases was then illustrated
for the class of quadratic materiab mentioned previously (Beatty. 198~). Free vibrational
motion is studied by Beatty and Bhattacharyya (1989): forced motion is examined by
Bhattacharyya ( 1989).

[n all of these studies. the shear springs are considered to be ideally elastic rubber-like
materials. and the springs are undeformed prior to shearing. Although it is well-known that
rubber exhibits viscoelastic behavior. the damping etfect typical of rubber springs previously
was ignored for simplicity. Thus. our purpose in this work is to consider the effects of
viscous damping on the finite amplitude oscillations of a Il1ad supported symmetrically
between two simple shear blocks. [n this study. the blocks abo may be homogeneously
deformed prior to shearing.

A constitutive equation for a general class of incompressible. isotropic viscoelastic
materials of diflerential type will be described in Section 2. We then consider a special class
for which the Cauchy stress is at most a linear function of the stretching tensor. a class that
includes the well-known Voigt--Kelvin solid of linear viscoelasticity theory. This otherwise
nonlinear constitutive equation pn:dicts creep and recovery phenomena typical of linear
viscoelastic materials. but here extended to include familiar kinds of incompressible. hyper
elastic materials with linear viscosity. We name these materials \'iscohyperclastic materials.
and exhibit particular kinds identitied as Mooney Rivlin and neo-Hookean varieties. the
latter being a special case of the former.

The nonlinear theory is applied in Section J to study the quasi-static response of the
material in a simple shearing deformation. superimposed on a given static. finite homo
geneous strain. The Cauchy stress is determincd. In Section~. general relations that charac
terize creep and recowry phcnomena an: ohtaincd and specific results arc derived for a
viscoclastic Mooney Rivlin material. Thcn. in Scetion 5. solutions for the finite amplitude.
heavily damped and lightly damped. free vihrations ofa rigid body supported symmetrically
by viscoelastic Mooney Rivlin shear mountings arc llescribnl. The effects of the primary
homogeneous strain on creep and recovery phenomena of the material. and its eflects on
the frequency. the damping. and the logarithmic decrement typical of the physical response
arc described an;dytically and illustrated graphically. In addition. etli:l:ts of the ultimate
equilibrium shear arc discussed. Universal frequenl:y and damping relations whil:h arc
independent of the e1astil: or viscous material parameters arc obtained for our viscoelastic
Mooney -Rivlin and neo-I/ookean materials. The analysis shows that the primary homo
geneous deformation plays a signilil:ant role in the determination of all aspects of the
mechanical response of the shearing oscillator. General equations for the exact solution of
the problem for free vibrations of a load on nonlinear. perlectly elastic shear mountings
arc given at the end.

2. TilE CONSTITUTIVE EC)UATION H)R A NO:-':L1NEAR VISCOELASTIC SOLID

The constitutive equation for an incompressible. isotropic. nonlinear viscoelastic solid
of ditl"crential type will be introduced. and afterwards two special hyperelastic varieties will
be identified. It will be shown that this model is a generalized form of the well-known Voigt
Kelvin solid of classical linear viscoelasticity theory.

To begin. we shall need tl) recall the Cauchy-Green deform;ltioll tensor II and the
spatial velocity gradient tcnsor I. =: grad l"(x. 1) (Truesdell and Noll. 1965). These are
defined in terms of the deformation gradient tensor I" in accordance with

. (~x(X. t) II =: FF r. I. = ....1" II- =: - ~X .
( . (I)

where x(X. t) is thc current position vector of the particle initially at the place X in a fixed
frame (p. A superimposed dot denotes the usual material time derivative in cpo We also recall
the stretching tensor n =: ~(L+ I.'). When the material is incompressible. the following
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constraints on the principal invariants of Band 0 must be respected for all motions of the
body:

/J(B) = det B = I, /,(0) = tr 0 = div v = O. (:!)

Now let us consider a class of isotropic. incompressible viscoelastic materials of differ
ential type for which the extra Cauchy stress T E = T +pI is an isotropic function,:? of B
and 0 so that

T == -pI + ,:?(B. 0). (3)

where p is an undetennined pressure. We note that the model (3) is a member of the general
class of materials of the differential type described by Truesdell and Noll (1965). [t is also
known as a Rivlin-Ericksen material of grade I. Accordingly. the isotropic function,:? has
the Rivlin-Ericksen representation

f = f/J, B+f/J~O+f/JJB~ +f/JJO~ +f/J~(BD+ DB) +f/Jh(B~D+ OB~)

+f/J7(BO= + D~B) +f/J~(B~D~ + D~B~). (4)

where (P, (i = I.:!..... 8) are certain scalar-valued. isotropic functions of Band 0 (Rivlin
and Ericksen. 1955). See also Truesdell and Noll (1965).

The Cayley-Hamilton theorem may be used to recast (4) in terms of B- 1
• Thus. we

wish to direct attention to a particular suhclass of these im:ompressible viscoelastic materials
whose constitutive equation (3) is given by

(5)

The constant '1 is the viscosity coellicient and II, and II 1 arc scalar-valued functions of the
principal invariants I, and 12 of II .tlone. When '1 = O. (5) yields the familiar constitutive
equation for an incompressible. isotropic elastic solid. Thus. (5) describes the uncoupled
linear viscous and nonlinear elastic response of an isotropic. incompressihle material, a
possible special c.tse among nonlinear theories with linear viscosity descrihed in Truesdell
and Noll (1965. p. 114). See .l1so Narain (llJS6).

2.1. Relatiotl to litlt'ari:t'c1l'i.H·oela.\'tici!.I' t"('orr
The linearized infinitesimal theory related to (5) may be easily derived. We let

F = 1+ G. where G is the usual infinitesimal deformation gradient from the natural state.
and r~'Call that the infinitesimal engineering strain /: = ~(G+G'''. Then upon neglecting all
products of G and G. we find by (I) that

B = I +2/:. I) = i. tr I: = 0, tr i = O. (6)

The last two relations arc the first order approximations to the incompressibility constraints
in (2). Thus. to the first order in the infinitesimal strain I: and strain rate i. the constitutive
equation (5) is approximated by

T = -fil +2G/: +2'1&. (7)

[n (7), fi is another arbitrary, undetermined hydrostatic pressure. G == II I (3. 3) - II - .(3, 3)
denotes the constant shear modulus of the natural state. and T is now the same as the
engineering stress tensor. We recognize (7) as the constitutive equation for the familiar
incompressible Voigt-Kelvin solid. Therefore. (5) describes one kind of generalized incom
pressible Voigt-Kelvin material for finite deformations. [t is evident from (4). however.
that other generalized varieties of linearly viscous. nonlinearly clastic materials exist which
will reduce to the same linearized equation (7).
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2.2. Nonlinear incompressihle z'iscohyperelastic materials
When the elastic response functions may be characterized by a strain energy density

r.(l,.l~). per unit volume. so that

(8)

the model (5) is called an incompressible. z'iscohyperelastic material. A viscoelastic Mooney
Rivlin material is an example for which the elastic response functions (8) are constants.
That is, the strain energy is a linear function of the first and the second invariants of B
(Beatty. 1987). We thus write

Gr. =~,~I~-[(l1-3)+:x(l~-3)J.
_( +:x)

(9)

where G is the constant clastic shear modulus and IX > 0 is another material constant,
usually between 0 and I. Hence. the constant elastic response functions (8) are expressed
by

:xG

I +:x'
( 10)

.lIld the constitutive equation for our viscoelastic Mooney Rivlin ll1ah:rial is given by

(j
T = - pi + [B - :x B 1J+ 2111>.

I+:x

The special case :x = 0 defines the viscoelastic neo-Hookean model:

T= -pl+GB+21ID.

(I I)

( 12)

Thus, the viscoelastic neo-Hookean material is very similar to the linearized form in (7).
For brevity. we sometimes refer to (II) and (12) as the Mooney -Rivlin and neo-Hookean
models, rcspectively. It is clear that other kinds of models may be introduced.

A compressible class of viscoelastic materials may be defined similarly upon replace
ment in (5) of - p by another elastic response function IJ o• for example. In this case, the
three response functions will depend on ull three of the principal invariants of B .1I0ne. It
should be noted also that for comprcssible m'lterials an additional term cPul must be
appended in (4). We shall return to this topic in a separatc paper. An easy application of
the gencral theory for incompressible materials will be studied next.

3. SIMPLE SIlEAR SUPERIMI'OSED ON A FINITE TRIAXIAL STRETCII

We now consider a rigid body of mass M on a smooth surface inclined at an 'lngle 0
with the horizontal plane and supported symmetric'llIy between identical viscoelastic rubber
springs oforiginal length L and cross-sectional area A. We shall suppose that by application
of surface tractions alone e.lch spring is initially subjected the same homogeneous. quasi
static triaxial deformation leading to an ultimate equilibrium configuration with coordinate
stretches )'k so that ).,).!).\ = I. We shall refer to this ultimate equilibrium configuration of
homogeneous strain as the homogeneous, or predeformed stale. The springs are then bonded



Vibrations of a body supported by shear mountings 359

Fig. I. A rigid load .\f supported symmetrically between identical viscoelastic rubber shear springs
subjected initially to a homogeneous deformation with coordinate stretches i.•.

to the body at one end and to rigid supports at the other. as suggested in Fig. I. The
equilibrium stress distribution in the homogeneous state will be indicated later; other details
arc similar to those provided by Beatty and Zhou (1990). Since the shear mountings are
identical, however, the springs exert no resultant force on the load M in the homogeneous
state.

We now suppose that when the load is released to slide on the inclined surface. each
block executes a further time-dependent simple shearing deformation of amount K(I).
Hence. the ~hearing motion is defined by the following rectangular Cartesian coordinate
relation for the present place (x. y. =) occupied by the particle whose place was at (X. Y, Z)
in the natural, undeformed stilte:

(13)

Of course. the superimposed simple shear (13) is an ideal deformation. For simplicity. we
han: ignored bending and other evident end effects which usually will accompany the
shearing. With K(O) =O. (13) describes the primary triaxial deformation described above.
We note that for a time-independent shear. (13) coincides with the example studied by
Wineman and Gandhi (1984). Rajagopal and Wineman (1987), and Beatty (1989b).

Let {Ck} = {i, j. k} denote the usual rectangular Curtesian basis in the directions of x,
y and =, respectively. us shown in Fig. I. Then Clk = cJ ® Ck defines the associated Cartesian
tensor product basis. Use of (13) in (I) yields

The relevunt principul invariants are then found to be

/I(B) = ).;+).i+).3(K 2+ I),

/2(8) = ).;2+A.J 2+).,2(K2+ I),

/J(B) = ).;).3).i = I. /,(D) = O.

( 14)

( 15)

( 16)

(17)

( 18)

In view of the last two relations. the additional simple shearing deformation is isochoric.
and the incompressibility conditions (2) are satisfied.
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With the aid of (15). (16) and (17). the nonzero components of the Cauchy stress
tensor are obtained from (5). We find

( 19)

(20)

(21 )

(22)

wherein the shear response function is defined by

(23)

One must bear in mind also the constraint (18),. It is now clear that when K == O. (19)-(22)
yield the uniform equilibrium stress distribution in the homogeneous state mentioned at
the start.

Elimination ofp between pairs of the normal stress components leads to three relations
for the normal stress differences. One of these is related to the shear stress and the viscosity:

. (Ai +;.~(K: -I») .
7 I I - T" "'" . , (T, ' - '1 A}... A·~.~ . (24)

Thus. when" "'" 0 and K is constant. we ontain frol11 (24) the universal relation for nonlinear
elastic solids. a result first reported ny Wineman and Gandhi (19X4) and discussed further
hy Rajagopal and Wineman (19X7). and ny Beally (19X9h). However. the same result holds
also when '1 j:. 0; this happens when the load allains its ultimate equilihrillm configuration
of shear for which K "'" O. as discussed later on.

Since the response functions arc functions of the principal invariants of Bin (18), we
have Ilr = IJr(i.f.)'~.K:(t». r = I. -I. Thus. withp =p(t). it follows from (19)-(22) that
div T(x. t) = 0 for all t. and hence the simple shearing deformation superimposed on a
homogeneous. triaxial deformation is a controllable. quasi-static dd'ormation. The time
varying surface tractions needed to control the shearing motion can now be found; but we
shall find no need for them here.

The relation (22) is valid for all incompressible viscoelastic materials in the class (5).
It is clear that the shear stress. which is furnished by the load interface. is a function of
both the amount of shearing K and the rate of shearing K. As a result. this leads naturally
to discussion of the I~llniliar creep and recovery ef1i:cts.

4. ViSCOELASTIC CREEI' AND RECOVERY plIENOMENA IN SIMPLE SIIEAR

The creep clfect is characterized by growth of the shear deflection K( t) under a constant
shearing stress T ,: = r I:. say. We expect. of course. that if the load is released from the
homogeneous st<lte. the she;lr will increase asymptotically to ;111 llltim;lte equilihrium state
dclined by K(t) ..... 0 and K(t) ..... K. as t ..... Cf..!. Therefore, the ultimate shear deflection K. is
determined by the constant stress t' I: in ;lccord;lnce with (22) :

(25)

The other ultimate stress components are provided by (19)-(21). Hence. the ultimate
equilibrium state of the shear block depends on only the clastic part of the material response
evaluated at K = K,; and this is uniquely determined by (25) independently of the viscosity

'1·
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The governing equation for the quasi-static shearing motion is provided by (22) and
hence for the creep effect we have

dK ., ., K' T f K)-'1 Cit = Ki·( ...·j, .... ~, -(t» - I: == ( . (26)

Here T 1~ is an arbitrary constant shear stress. Integration of (26) from the homogeneous
state where K = 0 yields

(27)

If an additional shearing load is applied at some intermediate stage so that the constant
total shear stress is r 1~' the creep continues from this intermediate state with different initial
data. but the effect is essentially the same and the ultimate shear K, is determined by (25).

We now turn to the recovery phenomenon. This is a decay process characterized by a
decreasing shear defl\.."Ction K(t) from an arbitrary initial shear KI) at which the load is
suddenly removed or perhaps suddenly reduced to a lesser value. In particular, if the motion
begins from the ultimate state determined by (25) and the load is reduced suddenly to zero
so that T , ~ = O. (22) provides the governing equation for recovery:

Integration of (2X) from the ultimate equilihrium shear K(O) = K, yields

(A' dK t

1.1/(K) = - fl'

(28)

(29)

If the empirical inequalities (sce Truesdell and Noll, 1965; Wang and Trucsdell. 1973;
Bcatly, 1987)

(30)

hold for all deformations of an incompressible. viscoelastic material. it follows from (23)
that I > 0 holds for all iSOl.:horic deformations. Henceforward. we shall assume this holds.
Moreover. when the shear response function (23) is known. (27) and (29) may be integrated
to determine K(t) in the creep or the recovery process. To go further. therefore. we are
forced to consider particular cases. The Mooney-Rivlin model provides a simple example.

4.1. C"'ep alltl recOI'ery ofa MUlJlU'}'-Ril'lil/ material in shear
A viscoelastic Mooney-Rivlin material is characterized by constant response functions

(10). Therefore, the shear response function (23) also is constant. In terms of the usual
shear modulus G and the Mooney-Rivlin parameter IX in (10). specifically.

G;.~ .'
I = I ·--(1 +1X.... j).+IX

(31)

When the primary state of the shear blocks is their natural state, all .tk = I and (31) shows
that I = G. Hence, the shear response function for a Mooney-Rivlin material from its
natural state is independent of IX. Suppose. on the other hand, that the triaxial strain is an
isochoric uniaxial deformation with stretch .t, so that
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Gi.; ( Gt)
Y=I+:x I+r.'

(32)

(33)

In this case. the shear response now depends on Gt; it increases with the uniaxial stretch i.,
in tension and decreases with the stretch in compression. The relation (33) will be useful in
discussion of results presented later.

For the neo~Hookeanmodel,Gt = 0 and (31) yields

(34)

Therefore. the shear response of a neo-Hookean material varies only with the square of the
longitudinal stretch i' 2 in the homogeneous state. It has the same form regardless of how
the initial deformation is produced. In the usual simple extension with stretch i. 2 = i....
y = Gi.;. as seen in (33).

In any event. for a Mooney-Rivlin material. the functions f(K) and g(K) in (26) and
(28) arc linear in A.'. Recalling (25). we thus easily obtain from (27) the formula for creep
of a viscoelastic Mooney-Rivlin material in shear:

K(i) = K,(I-(' ;"~). (3,5)

Integration of (29) delivers the equation for recovery of a viscoelastic Mooney-Rivlin
material in shear:

(36)

In either case. it is seen that 0 ~ K/K, ~ I for all K(I). The results (35) and (36) will be
discussed in turn. We begin with the creep relation (35).

Since y > O. when the load is released from its initial state (35) shows that the shear
deflection asymptotic.lIly approaches its ultimate equilibrium value K = K, a"s t - 00. which
was anticipated earlier. Theoretically, it takes an infinitely long time to complete the creep
process. On the practical side, however, we need some measure of how fast the shear
detlection creeps to the final equilibrium state. The retardation time t, defined by

'1
t, == -

Y
(37)

provides a measure of this property. By (35), the ratio K/ K, at t = t, determines the constant
retardation ratio

(38)

This is a universal constant for all Mooney-Rivlin materials. Therefore, the retardation
time t, is the time during which the amount of shear attains 63.2% of its ultimate value in
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Fig. 2. Creep response of a visCl'e1astil: Mooney-Rivlin material in a simple shear superimposed on
a pure homogeneous strain.

an uninterrupted creep process from the homogeneous state. The graph of (35) shown in
Fig. :2 is typical of the creep response in she.tr.

In principle. the values of A, and t, may be found by experiment. We suppose that K(t)
is me.lsured in a shear experiment in which the value of K, is ohtained as the ultimate
mnount of shear. Then the r.ttio Ylt[ = lit, may be read from the slope of the scmilog
plot of test data for y(t) == log (I - AIA,) = - III,.

It is evident in (37) that the ret'lrdation time varies inversely with the shear response
y. In .1 primary uniaxial deformation of the shear blocks. for t:xample. (33) shows that 'I
im:n:.lses in a simple tension with stretch A.., > I and decreases in a compression with ;.s < I.
We suppose. of course. th'lt the latter is a stable equilibrium contigumtion. Thert:fore. as
shown in Fig. 3. tht: retardation time may be decreased by prestretching the blocks in

3
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Fig. J. Retardation time ratio 1,/1, as a fum:tion of the stretl:h ..., in a primary simple extension of
the shear blocks for three values of the Mooney-Rivlin parameter 2. The graph for 2 = O. however.

is \'alid for an arbitrary homogeneous deformalion of a neo·Hookean malerial.
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Fig. 4. Recovery response of a viscoelastic Moom:y-Rivlin m.llerial in a simple shear superimposed
on a pure homogeneous deformation.

tension and increased by their compression; that is. creep occurs more quickly when the
blocks arc prestretched. more slowly when precompressed. In the unstretched case with
A, = I. the retardation time in creep from the n,\lural state is a constant I, = I I == fl/G
independent of~. In general. the retardation time (37) is a monotone decreasing function
of A, E (0. ;;(J) for each ~. It grows indefinitely large when ;., ..... 0 and becomes very small
when ;" ..... .:Ai. as shown in Fig. 3. The v,triation of the retardation time curves for a few
values of ~ also arc mapped in Fig. 3. The case !X = 0 describes the neo-Hookean model.
One sees. however. that these curves arc relatively insensitive to variations of (X E [0, 00). the
usual value being smaller than I. Precisely. for (X = 00. 1,/1, = J.,- '. whereas for ex = 0,
1,/I, = J,," ~ ; and for ex = I, 1,// 1 = 2/[).,o., + 1)]. Moreover. for neo-Hookean shear mounts
subjected to an arbitrary homogeneous strain. 1,/1, = Ai ~. follows from (34) and (37).
Thus, the curve for ~ = 0 in Fig. 3 is valid more generally for an arbitrary axial stretch ;'1
in the predcformed state of a viscoclastic nco-Hookean material. This important practical
examplc thus shows that an initial longitudinal stretch ;" plays a more significant rok
than the material constant (X in the variation of thc rctardation time and in the physical
characterization of their etlccts in creep.

The graph of (36) in Fig. 4 shows the response typical of recovery in shear. The
recovery starts from the ultimate shear K, when the shear stress r 11 is suddenly removed.
In this case, the amount of shear K(/) approaches the unsheared. homogeneous state
asymptotically.as I ..... ""f..,. It can be shown that the retardation time (37) is the time during
which the shcar rccovers by 63.2% from its ultimate value in an uninterrupted recovery
process. Said difTerently, I, is the time for the shear to recover to within 36.8% of its null
value. The recovery ratio K(/,)/ K, = (! I == 0.368 given by (36) is a universal constant for
all Mooney-Rivlin materials. For recovery. the dependence of the rctardation time on ;'"
and (X is exactly the same as shown in Fig. 3 for creep. Hence. as before. the retardation
time in the recovery process is decreased by extension of the blocks and increased by their
contraction. which otherwise we suppose is stable. This means that recovery of the load
supported by springs under tension always is faster than recovery when they are compressed.

This completes our study of the creep and recovery properties ofa viscoelastic Mooney
Rivlin material in a simple shear superimposed on a primary homogeneous deformation.
We next consider viscoelastic efTects in the vibration problem of the shearing oscillator
shown in Fig. I.
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5. FINITE AMPLITUDE VIBRAnO~S OF THE SHEARING OSCILLATOR

In this section. the finite amplitude. damped. free vibration of a load supported
symmetricalJy betweeen identical viscoelastic shear mountings subjected initially to the
same homogeneous defonnation wilJ be investigated. The equation of motion is fonnulated
for an incompressible. isotropic viscoelastic material of general type (5). Afterwards. the
problem is solved exactly for a viscoelastic Mooney-Rivlin material. Some results for
nonlinearly elastic solids are discussed at the end.

To begin. we note that the engineering stress S on an incompressible material is
detennined by S = TF- T (Beatty. 1987). Hence, with the use of (14). the engineering shear
stress S I: at the shear block interface with the load is given by S 12 = Td ;'2' in which we
recalJ (22). Also. use of (13) gives the acceleration .i = A2LK of the interface identified by
r = L in the natural state where its area is A. As usual, the inertia of the shear blocks
themselves wilJ be ignored. We shall assume that the quasi-static shear stress at the bonded
load interface appro:<imates the shear stress in the dynamical problem. Of course. in view
of the symmetry. the nonnal tractions exerted on M by the shear blocks are balanced at
all times. Hence. with reference to the system in Fig. I. the general nonlinear equation of
motion for a load M supported symmetrically by incompressible, isotropic viscoelastic
shear mountings is given by

(39)

wherein we recall (23) and write .q* == fI sin 0 for the gravitational acceleration component.
In a motion of M on a smooth horizontal surface, we set g* = 0 in (39). In either case. the
nature of the differential equation (39) will depend on the form of the shear response
function. We thus turn to a particular example.

5.1. [)a1lll'etlt'ihraliot/s on I'iscodaslic Moot/ey··Ril'!it/ sprit/fls
The shear response function for a Mooney-Rivlin material is a constant given in (31).

Hence. the differential equation (39) for the finite amplitude motion of a shearing oscillator
simplifies to the familiar equation for a linear damped oscillator:

It is sccn that the ultimate equilibrium position K, obtained from (40) is

,AIL).; . ,g*
K = p- --_.-: with p. == -'--.
'2Ay LA2

(40)

(41 )

For our Mooney-Rivlin model. this equilibrium equation is equivalent to (25) ; it identifies
in specific terms the ultimate amount of shear in the quasi-static creep and recovery solutions
(35) and (36). Using the first relation in (41) to eliminate the mass from (40). we obtain
the equation for the damped. free vibrational motion of our Mooney-Rivlin shearing
oscillator in the form

wherein

1\(/) == K(t) - K,.
., I,. .,"v = P"-- = W"I- - K, ,.

(42)

(43)

and I, is the retardation time (37). From (41 h we identify p~ == g*/ L. We shall suppose
that K, #- O. i.e. g* #- O. The case when K, = 0 is treated separately later on.
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viscoelastic Mooney-Rivlin shear ml1untings subjecled inilially to an isochoric. homogeneous

deformation.

The nature of the solution of (42) will depend on the undamped, free vibrational
frequency (t) and the damping coeflicient v defined in (43). Both arc functions of the primary
deformation of the shear blocks and the ultimate shear del1ection. So before we discuss the
solution of (42), the damping and frequency terms in (4) will he examined.

5.1.1. Frecll/e1lcy £1",1 clampi1lg ralios for Moof/('y-Ril'li1l .I'pri1lgs. The last expression in
(43) reveals that the frequency ratio wlp is a universal rel~ltion for all viscoelastic Mooney
Rivlin shear mountings. For a lixed homogcneous state, the ratio is determined strictly by
thc amount of the static shear del1ection. Hcnce, test data for the undamped, free vibrational
frequency ofa simple shearing oscillator do not distinguish one Mooney-Rivlin shear spring
from any other having the same shear del1ection. The frequency ratio wlpu is a monotone
decreasing function of both ;'2 and K,. Hence, an increase in either static deformation of
the springs lowers the freq uency ; a decrease of either will increase it; and for small K.. OJ

may he very large. This universal frequency response is illustrated in the three-dimensional
surface plot in Fig. 5. Although the di~lgr<lm shows a wide range for K" since K = tan If;,
where If; is the angle of shear shown in Fig. I, it is clear that in practical cases K, < )/5

(,f; < 30'), say. Of course, the possibility of larger values is not exclLltkd.
Returning to the second relation in (43), we lind by usc of (31) and (37) the damping

ratio for our viscoelastic Mooney-Rivlin oscillator:

v I+:x
~(~ =MK.( I+;;,f~)

with (44)

Thus. for a given homogeneous state, the damping ratio decreases as K, increases under
the load. Il is seen that in every shearing motion from the natural state with ;'k = I, (44)
yields the universal damping ratio

(45)

Further. when the primary deformation is induced by uniaxial loading with stretch ;'2 = ;".
we may recall (32) and (33) and thus note that the damping ratio (44) is decreased by
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pretension and increased by precompression. Also. in this case. the dependence on ex in
(43) ~ is determined by t, in acconhlllce with Fig. 3; hence. we may expect no great variation
of damping with Ct. In general. for a fixed elongation. the damping ratio will increase with
ex: for a fixed compression. it will decrease when Ct is increased. The damping ratio provided
by (44) under a primary uniaxi.tlloading is shown in Fig. 6 for ex = I.

Finally. we see from (44) that with IX = 0 the damping ratio for neo-Hookean springs
is given by the universal relation

v
;11 = ;:~K

- .J

(46)

valid for any primary isochoric. homogeneous deformation of the shear blocks. Thus. the
damping decreases significantly with increasing extensional stretch. and grows greater with
increasing compression. We next consider the appropriate solution of (42).

5.1.2. Descriptio" oj the clamI'd l"ihrutio"u/ motio". The general solution of (42) is well
known. Since the damping coeflicient v and the undamped. free vibrational frequency w in
(43) are positive. the solution of (42) is asymptotically stable at K = K, for all physically
possible initial dat.1. If \' > w. that is. with (37) and (43h, if

y
tT> 2-.

w
(47)

the motion is heavily damped. The relation (47) simply indicates that a heavily damped
motion is possible only when the material viscosity tT is sufliciently large, which is intuitively
natural. When the inequality in (47) is replaced by equality. the system is critically damped
and we write tT = tT· and v = v·, where
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'('
\,* = 0), '7* = 2 -- .

W
(48)

The solution of (42) in the heavily damped case is given by

in which

And for the critically damped case, we have

I\(t) = K(t)-K, = (A + Bt)e- Y
·'.

(49)

(50)

(5 \)

The constants A and Bin (49) and (51) are detennined by the initial data. as USU.II.
Whether either of the over-dampcd solutions (49) or (51) may hold will depend upon

the extent of the primary deformation of the shear mounts. in addition to the nature of the
material constants. If the homogeneous state is an isochoric, simple extension so that (33)
applies, for ex'lmple, we see from (48) and the last relation in (43) that upon increasing the
stretch )., by tension, or by increasing the static shear deflection K" the critical number 1/*
in (48) will increase, (47) may then fail to hold, and hence a heavily damped motion is less
likely to occur. On the other hand, damping of the system may be elfectively increased by
sullicient compressional deformation to reduce the shear response in (33) and hence also
the critical number in (41<). In this case, (47) might hold.

We shall now consider the oscillatory motion of the load with light damping so that
the \' is small compared with 1tJ. Then the solution to (42) m.IY be written as

(52)

wherein the damped circular frequency 1tJ" is defined by

(53)

and Qn and cpo arc real constants determined by assigned initial conditions. We see from
(52) that if the load p.lsses the position" = 0 in a given direction at time to, it will pass
" = () in the same direction at time to + 2rr/UJ". Although the motion is not periodic, the time
r defined by

(54)

usually is called the period of the lightly d'lmpcd motion. Thus, the lightly damped, finite
amplitudc motion of a load M supported by viscoelastic Mooney-Rivlin shear springs is a
h'lrmonic. but nonperiodic oscillatory motion with damped circular frequency (53) and
having an cxponentially decreasing amplitude ending at the static shear deflection K" the
center of the oscill'ltions.

The rate of the amplitude decay usually is measured by the logarithmic dccrement c5
which is given by

. ", 2rrv 2rrv
(j = log --- = -- = c., ,.

"II-I W" ya)"-v'
(55)

where ",:;(1) and "i+t(t+ r) arc two successive amplitudes of the motion (52). When v is
small compared with w, c5 ~ 2rrv/w. Hence. by (43), (31), and (37). we have approximately
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(56)

We see that () varies inversely with the deformation of the shear blocks. If J is measured in
the usual manner from the amplitudes of the damped response curve in a free vibration of
the system. it is seen that (56). or similar relations of this kind. provide a means to determine
the viscosity coefficient '1. or the ratio 7t/i.. for example. when the other data may be known.
We note that 0 also is a measure of the amount of energy dissipated in each cycle of the
decaying motion: however. we leave discussion of this matter for another time.

We recall that the solution for the viscoelastic neo-Hookean model is the special case
for which :x =0 everywhere above. In particular. for the neo-Hookean material. we have
from (56),

(57)

Thus. by increasing A.: in an arbitrary. primary homogeneous deformation of the springs,
or by increasing K,. the lightly damped motion of the neo-Hooke.tO oscillator is made more
lively. the amplitude decays more slowly. The amplitude decays more rapidly, when the
blocks are initially compressed.

We notice also that if the shear blocks of a Mooney-Rivlin oscillator are assembled
without primary deformation. () I) yields y = G. Therefore. in this case. none of the fore
going relations will depend on the Mooney-Rivlin parameter a. Hence. the viscoelastic
vibrational effects on the motion of a load supported by initially undeformed Mooney·
Rivlin springs with moduli G and '1 cannot be distinguished from those for neo-Hookean
springs of the same design and having the sami.: two materi.t1 constants. In (56). for example,
the logarithmic decrement for lightly damped motions of a load on initially undeformed
Mooney Rivlin springs is given hy

(58)

which is exactly the same as the general rule (57) when A.2 = I.
Moreover. for a primary uniaxial stress, we have seen earlier in Fig. 3 that if 1, =F I.

an increase in :x at a fixed stretch results in an increase in the retardation time in a primary
simple tension. and a decrease in compression. Hence. J in (56) increases with tl in a given
simple tension. For a tixed elongation of the springs. therefore. an incre.tse in tl leads to an
efrective increase in the damping. as described earlier. An increase in 'X when the springs
arc under a given initial compression. as seen from Fig. 3. has the opposite, possibly greater.
clrecl in reducing the cfrc.'Ctive damping. We next examine the case when K, =O.

5.1.3. Motion on a smooth horbmtal sur/ac£'. The motion of the load M on a smooth
horizontal surface is described by (40) in which g* = 0; and hence the static equilibrium
shear deOection is K, = O. In this case. the motion is governed by (42) in which 1\ = K and
the damping cocfTIcient v and undamped frequency OJ are defined by

2A""'v - .....
- - MUr (59)

The trivial equilibrium condition cannot be used to remove the load from (59) : but we still
have 2\' = (JJ~t,. Since v and ware positive, the motion is asymptotically stable at K, = 0 for
all physically possible initial data. If (48) and (49) may hold. the motion is over-damped
and the solution with K, =0 is given by (50) and (51). respectively. Otherwise. the motion
is lightly damped and the solution is given by (52) with K, = O. The effect of the primary
homogeneous deformation on the damping and the logarithmic decrement is similar to the
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previous case. Hence. in each instance. the horizontal motion bt:gins from an assigned initial
state and ultimately comes to rest in the primary equilibrium state where K, = O. How it
does this is determined. not only by the material constants. but also by the nature of the
initial static deformation of the springs.

This concludes our study of the free vibrations of a load supported symmetrically by
viscoelastic shear mountings. Some further results for shear and other deformations of
isotropic viscoelastic materials in the class (5) will be presented in future papers. We end
our work here with a brief mention of the general solution possible for perfectly elastic
shear springs.

5.2. Free ('ibrations on nonlinearly elastic shear mOl/ntings
For the undamped. perfectly elastic case when,., = O. (39) may be readily integrated

to obtain the energy integral

where K(O) == Ko and K(O) == Kn• A second integration yields the travel time

e' dK
t = J~" 1;00'

(60)

(61)

These equations have been applied by Realty (1984. 19XX) to study shearing oscillations
of the load from the natural state of isotropic dastil: shear mountings. However. the current
formulation admits an .Irbitrary homogeneous deformation of the shear hlocks.

Ilck"(I ...II'I~I/I''''I,,,t- This work was supported hy a ~rant from the National S<:i<:n<:e Foundation to the University
of Kentll\:ky.
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