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Abstract—A constitutive equation for an incompressible. isotropic, nonlinear viscoelastic solid of
differential type. a class which includes the Voigt-Kelvin solid of classical linear viscoelasticity. is
applied to study the quasi-static response of the material in a simple shearing deformation super-
imposed on a given static homogeneous strain. The Cauchy stress is determined and general relations
that characterize creep and recovery phenomena are obtained. Specific equations are derived for a
viscoelastic Mooney-Rivlin model. Then the finite amplitude, damped, free vibration of a rigid
body supported symmetrically by viscoelastic Mooncy-Rivlin shear mountings is examined, and
solutions are given for heavily damped and lightly damped motions. The effects of the primary
static deformation on creep and recovery phenomena of the shear blocks, and its effects on the
frequency, damping, and logarithmic decrement characteristic of the motion are described ana-
Iytically and illustrated graphically. Effects of the ultimate equilibrium shear induced by the load
also are deseribed. Universal frequency and damping relations for viscoclastic Mooney -Rivlin and
neo-Hookean maodels are noted. 1t is shown that the primary homogencous deformation plays an
important role in determination of all aspects of the mechanical response. General equations for
the exact solution of the problem for free vibrations of a load on nonlincar, perfectly clastic shear
mountings also are provided.

[. INTRODUCTION

Engincering applications of shear mountings are well-known. Specific examples, including
the effects of shear in biological members, have been described in several recent papers by
Beatty (1984, 1988, 1989a), Beatty and Bhattacharyya (1989), and Bhattacharyya (1990).
These studies have yiclded a varicty of physical results which have shown that a simple
shear model provides significant mathematical simplicity in the study of finite amplitude
vibrations of a load supported by rubber shear springs. Various, rather general situations
have been investigated.

The undamped, large amplitude, periodic free vibration of a load supported sym-
metrically by arbitrary isotropic elastic sheur mounts has been studied by Beatty (1988). It
is assumed only that the shear response function is a positive, even function of the amount
of shear. When the shear response function is a constant, it is found that the finite motion
of the load is always simple harmonic. The Mooney-Rivlin, Hadamard, and Blatz-Ko
models arc examples for which this result holds. Otherwise, the frequency is amplitude-
dependent. This was illustrated exactly in application to a class of hyperelastic biological
tissues. An approximate frequency/amplitude relation was obtained for a soft tissue whose
shear response is a quadratic function of the amount of shear. However, for the same
problem, the exact solution in terms of clliptic functions may be read from the general
result derived earlier for a certain class of rubber-like quadratic materials (Beatty, 1984).
This class includes the aforementioned special models having a constant or a quadratic
shear response function in a simple shear deformation. The general model explored by
Beatty (1988) was subsequently applied to study the stability of the oscillatory motion of
a load attached by simple shear mountings to a steadily rotating vchicle (Beatty, 1989a).
General conditions for stability are described in simple physical terms; but study of the
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nature of the mechanical response in spectal cases would depend upon the particular form
of the sheuar response. The rich variety of results possible in specitic cases was then illustrated
for the class of quadratic materials mentioned previously (Beatty, 1984). Free vibrational
motion is studied by Beatty and Bhattacharyya (1989): forced motion is examined by
Bhattacharyya (1989).

In all of these studies. the shear springs are considered to be ideally elastic rubber-like
materials. and the springs are undeformed prior to shearing. Although it is well-known that
rubber exhibits viscoelastic behavior, the damping effect typical of rubber springs previously
was ignored for simplicity. Thus, our purpose in this work is to consider the effects of
viscous damping on the finite amplitude oscillations of a load supported symmetrically
between two simple shear blocks. In this study. the blocks also may be homogeneously
deformed prior to shearing.

A constitutive equation for a general class of incompressible, isotropic viscoelastic
materials of differential type will be described in Section 2. We then consider a special class
for which the Cauchy stress is at most a lincar function of the stretching tensor, a class that
includes the well-known Voigt-Kelvin solid of lincar viscoelasticity theory. This otherwise
nonlinear constitutive equation predicts creep and recovery phenomena typical of linear
viscoelastic materials, but here extended to include familiar kinds of incompressible, hyper-
clastic materials with lincar viscosity. We name these materials viscohyperelastic materials,
and exhibit particular kinds identified as Mooney -Rivlin and nco-Hookean varietics, the
latter being a special case of the former,

The nonlinear theory is applied in Scction 3 to study the quasi-static response of the
material in a simple shearing deformation, superimposed on a given static, finite homo-
geneous strain. The Cauchy stress is determined. In Section 4, general relations that charac-
terize creep and recovery phenomena are obtained and spectfic results are derived for a
viscoclastic Mooncy Rivlin material. Then, in Section S, solutions for the finite amplitude,
heavily damped and lightly damped, free vibrations of a rigid body supported symmetrically
by viscoelastic Mooncy Rivlin shear mountings are described. The cffects of the primary
homogencous strain on creep and recovery phenomena of the material, and its effects on
the frequency, the damping, and the logarithmie decrement typeal of the physical response
are described analytically and illustrated graphicadly. In addition, effects of the ultimate
equilibrium shear are discussed. Universal frequency and damping relations which are
independent of the elastic or viscous material parameters are obtained for our viscoelastic
Mooncey -Riviin and neo-Hookean materials. The analysis shows that the primary homo-
gencous deformation plays a significant role in the determination of all aspects of the
mechanical response of the shearing oscillator. General equations for the exact solution of
the problem for free vibrations of a load on nonlinear, perfectly elastic shear mountings
are given at the end.

2. THE CONSTITUTIVE EQUATION FOR A NONLINEAR VISCOELASTIC SOLID

The constitutive equation for an incompressible, isotropic, nonlincar viscoclastic solid
of difterential type will be introduced, and afterwards two special hyperelastic varicties will
be identified. It will be shown that this model is a generulized form of the well-known Voigt-
Kelvin solid of classical lincar viscoclasticity theory.

To begin, we shall need to recall the Cauchy-Green deformation tensor B and the
spatial velocity gradient tensor L= grad v(x. 1) (Truesdell and Noll, 1965). These are
defined in terms of the deformation gradient tensor F in accordance with

OX(X. 1)

S B=FFL, L =FFOL 1
‘X M

F =

where x(X. 1) is the current position vector of the particle initially at the place X in a fixed
frame . A superimposcd dot denotes the usual material time derivative in . We also recall
the stretching tensor D = YL+ L7). When the material is incompressible, the following
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constraints on the principal invariants of B and D must be respected for all motions of the
body:

L(B)=detB=1, [|/(D)=trD=divv=0. (2)

Now let us consider a class of isotropic. incompressible viscoelastic materials of differ-
ential type for which the extra Cauchy stress T, = T+pl is an isotropic function # of B
and D so that

TE —pl+f(B.D). (3)

where p is an undetermined pressure. We note that the model (3) is a member of the general
class of materials of the differential type described by Truesdell and Noll (1965). It is also
known as a Rivlin-Ericksen material of grade |. Accordingly, the isotropic function # has
the Rivlin-Ericksen representation

J=0B+¢.D+¢:B°+¢0,D’+¢(BD+DB)+¢.(B°D+DB")
+¢,(BD°+D°B)+¢«(B'D*+D*B°), (4)

where ¢, (i = 1.2,....8) are certain scalar-valued, isotropic functions of B and D (Rivlin
and Ericksen, 1955). See also Truesdell and Noll (1965).

The Cayley-Hamilton theorem may be used to recast (4) in terms of B ', Thus, we
wish to dircct attention to a particular subclass of these incompressible viscoclastic materials
whose constitutive equation (3) is given by

T=—pl+fB+f B '+24D. (5)

The constant n is the viscosity coeflicient and 8, and | are scalar-valued functions of the
principal invariants 7, and /7, of B alonc. When n = 0, (5) yiclds the familiar constitutive
cquation for an incompressible, isotropic clastic solid. Thus, (5) describes the uncoupled
lincar viscous and nonlinear clastic response of an isotropic, incompressible material, a
possible special case among nonlinear theories with lincar viscosity described in Truesdell
and Noll (1965, p. 114). Sec also Narain (1986).

2.1 Relation to linearized viscoelusticity theory

The lincarized infinitesimal theory related to (5) may be casily derived. We let
F = 1+G, where G is the usual infinitesimal deformation gradient from the natural state,
and recall that the infinitesimal engineering strain g = G +G"). Then upon neglecting all
products of G and G, we find by (1) that

B=1+2, D=¢ tre=0, tré=0. (6)

The last two relations are the first order approximations to the incompressibility constraints
in (2). Thus, to the first order in the infinitesimal strain £ and strain rate £, the constitutive
cquation (5) is approximated by

T = —pl+2Ge+2ni. )

In (7)., p is another arbitrary, undetermined hydrostatic pressure, G = f,(3.3)—f_,(3.3)
denotes the constant shear modulus of the natural state, and T is now the same as the
engincering stress tensor. We recognize (7) as the constitutive equation for the familiar
incompressiblc Voigt-Kelvin solid. Therefore. (5) describes one kind of generalized incom-
pressible Voigt-Kelvin material for finite deformations. [t is evident from (4), however,
that other gencralized varicties of linearly viscous, nonlinearly elastic materials exist which
will reduce to the same lincarized equation (7).

$AS-¢
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2.2. Nonlinear incompressible viscohyperelastic materials
When the elastic response functions may be characterized by a strain energy density
X(I,. I,). per unit volume, so that

i}
t1
L4

ﬁ|=2< (8)
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the model (5) is called an incompressible. viscohyvperelastic material. A viscoelastic Mooney--
Rivlin material is an example for which the elastic response functions (8) are constants.
That is, the strain energy is a linear function of the first and the second invariants of B
(Beatty, 1987). We thus write

2(IJMJ[(II—3)+3t(1:~3)]~ 9

where G is the constant elastic shear modulus and a > 0 is another material constant,
usually between 0 and 1. Hence, the constant elastic response functions (8) are expressed
by

po=-C g = 10)
e Pt T (

and the constitutive equation for our viscoclastic Mooney Rivlin material is given by
T 1 “ [B—aB '|+24D (i
= —pl+ - 200,
! 1 +a !

The special case 2 = 0 defines the viscoclastic neo-Hookean model :
T = —pl+GB+24D. (12)

Thus, the viscoclastic neo-Hookean material is very similar to the lincarized form in (7).
For brevity, we sometimes refer to (11) and (12) as the Mooney -Rivlin and neo-Hookean
models, respectively. 1t is clear that other kinds of models mity be introduced.

A compressible class of viscoelastic materials may be defined similarly upon replace-
ment in (5) of —p by another clastic response function fi,, for example. In this case, the
three response functions will depend on all three of the principal invariants of B alone. It
should be noted also that for compressible materials an additional term ¢yl must be
appended in (4). We shall return to this topic in a separate paper. An casy application of
the general theory for incompressible materials will be studied next.

3. SIMPLE SHEAR SUPERIMPOSED ON A FINITE TRIAXIAL STRETCHI

We now consider a rigid body of mass M on a smooth surface inclined at an angle 0
with the horizontal planc and supported symmetrically between identical viscoelastic rubber
springs of original length L and cross-scctional arca A. We shall suppose that by application
of surface tractions alone cach spring is initially subjected the same homogencous, quasi-
static triaxial deformation leading to an ultimate equilibrium configuration with coordinate
stretches 4, so that 4,4,4, = 1. We shall refer to this ultimate equilibrium configuration of
homogeneous strain as the homogeneous, or predeformed state. The springs are then bonded
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Fig. 1. A rigid load M supported symmetrically between identical viscoelastic rubber shear springs
subjected initially to a homogeneous deformation with coordinate stretches 4,.

to the body at one end and to rigid supports at the other, as suggested in Fig. 1. The
equilibrium stress distribution in the homogeneous state will be indicated later ; other details
are similar to those provided by Beatty and Zhou (1990). Since the shear mountings are
identical, however, the springs exert no resultant force on the load M in the homogeneous
state.

We now suppose that when the load is released to slide on the inclined surface, each
block cxccutes a further time-dependent simple shearing deformation of amount K(¢).
Hence, the shearing motion is defined by the following rectangular Cartesian coordinate
relation for the present place (x, ¥, ) occupied by the particle whose place was at (X, ¥, Z)
in the natural, undeformed state:

x=ALX+KOALY, y=4Y, =iZ (13)

Of course, the superimposed simple shear (13) is an ideal deformation, For simplicity, we
have ignored bending and other evident end effects which usually will accompany the
shearing. With K(0) = 0, (13) describes the primary triaxial deformation described above.
We note that for a time-independent shear, (13) coincides with the example studied by
Wineman and Gandhi (1984), Rajagopal and Wineman (1987), and Beatty (1989b).

Let {e,} = {i. j. k} denote the usual rectangular Cartesian basis in the directions of x,
yand =, respectively, as shown in Fig. 1. Then e, = ¢, ® ¢, defines the associated Cartesian
tensor product basis. Use of (13) in (1) yields

F=2ic  +ien+ie,+Kise,, (14)

B = (Al +Ki3)e,, + Al +4ije,,+ Kii(ea +¢3), (15)

B '=i%e +4ii7en+ (A7 + KA e — KA He+ey). (16)
D = K(e,:+e3). (17

The relevant principal invariants are then found to be
[(B) = Ai+ A4+ A3(K2+ 1),
I,(B) = A7+ A5 2+ A7 (K2 + 1),
I,(B) = iliiii=1. I,(D)=0. (18)

In view of the last two relations, the additional simple shearing deformation is isochoric,
and the incompressibility conditions (2) are satisfied.



360 M. F. BearTy and Z. ZHOU

With the aid of (13), (16) and (17). the nonzero components of the Cauchy stress
tensor are obtained from (5). We find

Ti=—p+B (A +AK)+p_ 40, (19)
Too= —p+BAi+f_ (A P+ K07, (20)
Tii= —p+BAi+B_ 14577, (21)
Ti» =T = Ky+nk. (22

wherein the shear response function is defined by
v =AuB = Aif ). 23)

One must bear in mind also the constraint (18),. It is now clear that when K = 0, (19)-(22)
yield the uniform equilibrium stress distribution in the homogeneous state mentioned at
the start.

Elimination of p between pairs of the normal stress components leads to three relations
for the normal stress differences. One of these is related to the shear stress and the viscosity :

i AMHAHK =) 3
7II—.T22=<I I\'(i: : )(TI:“"I’\’)- (24)

Thus, when i = 0 and Ais constant, we obtain from (24) the universal relation for nonlincar
clastic solids, a result first reported by Wineman and Gandhi (1984) and discussed further
by Rajagopal and Wineman (1987), and by Beatty (1989b). However, the same result holds
also when i # 0 this happens when the load attains its ultimate equilibrium configuration
ol shear for which K = 0, as discussed later on.

Since the response functions are functions of the principal invariants of B in (18), we
have i = fr(4i A3, K1), T = 1, — 1. Thus, with p = p(1). it follows from (19)-(22) that
div T(x, 1) = 0 for all 1, and hence the simple shearing deformation superimposed on a
homogeneous, triaxial deformation is a controllable, quasi-static deformation. The time
varying surface tractions needed to control the shearing motion can now be found ; but we
shall find no need for them here.

The relation (22) is valid for all incompressible viscoclastic materials in the class (5).
It 1s clear that the shear stress, which is furnished by the load interface, is a function of
both the amount of shearing K and the rate of shearing K. As a result, this leads naturally
to discussion of the familiar creep and recovery effeets. ‘

4. VISCOELASTIC CREEP AND RECOVERY PHENOMENA IN SIMPLE SHEAR

The creep effect is characterized by growth of the shear deflection K(r) under a constant
shearing stress T'a = 15, say. We expect, of course, that if the load is released from the
homogencous state, the shear will tncrease asymptotically to an ultimate equilibrium state
defined by K(1) = 0 and K(1) = K, as t — . Therefore, the ultimate shear deflection K, is
determined by the constant stress t,, in accordance with (22):

N
—ts
.

hS

tors
.

; .
Wl r]
~—

T2 =Ky(4 (25)
The other ultimate stress components arce provided by (19)-(21). Hence, the ultimate
equilibrium state of the shear block depends on only the elastic part of the material response
evaluated at K = K, ; and this is uniqucly determined by (25) independently of the viscosity
.
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The governing equation for the quasi-static shearing motion is provided by (22) and
hence for the creep effect we have

dK 2 sa e
~ng, = K AL KR 0) = T = £(K). (26)

Here T, is an arbitrary constant shear stress. Integration of (26) from the homogeneous
state where K = 0 yields

Kﬂ =_1! 27
o SIKY -

If an additional shearing load is applied at some intermediate stage so that the constant
total shear stress is 7, ,. the creep continues from this intermediate state with different initial
data. but the effect is essentially the same and the ultimate shear K, is determined by (295).

We now turn to the recovery phenomenon. This is a decay process characterized by a
decreasing shear deflection K(¢) from an arbitrary initial shear K, at which the load is
suddenly removed or perhaps suddenly reduced to a lesser value. In particular, if the motion
begins from the ultimate state determined by (25) and the load is reduced suddenly to zero
so that T, = 0, (22) provides the governing cquation for recovery:

1K ey s
—,,‘d,- = Ky(23, AL K (0) = 9(K). (28)

Integration of (28) from the ultimate equilibrium shear K(0) = K, yiclds

X e
J' dl.\. _ l' (29)
k, 9(K) n

It the empirical inequalities (see Truesdell and Noll, 1965 ; Wang and Truesdell, 1973 ;
Beatty, 1987)

Bi>0, .. <0 (30

hold for all deformations of an incompressible, viscoelastic material , it follows from (23)
that ¥ > 0 holds for all isochoric deformations. Henceforward, we shall assume this holds.
Morceover, when the shear response function (23) is known, (27) and (29) may be integrated
to determine K(r) in the creep or the recovery process. To go further, therefore, we are
forced to consider particular cases. The Mooney-Rivlin model provides a simple example.

4.1. Creep and recovery of a Mooney-Rivlin material in shear

A viscoclastic Mooney-Rivlin material is characterized by constant response functions
(10). Therefore, the shear response function (23) also is constant. [n terms of the usual
shear modulus G and the Mooncey~Rivlin parameter a in (10), specifically,

Gi3 "
¥ = i..¥..;(l+a/.3). G0

When the primary state of the shear blocks is their natural state, all 4; = 1 and (31) shows
that y = G. Hence, the shear response function for a Mooney-Rivlin material from its
natural state is independent of «. Suppose, on the other hand, that the triaxial strain is an
isochoric uniaxial deformation with stretch 4, so that
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lil = ;.3 = /‘., R ;.3 = /;.J. (32)

Then (31) becomes

GAil 2
'=m<'+z)- (33)

In this case. the shear response now depends on «; it increases with the uniaxial stretch 4,
in tension and decreases with the stretch in compression. The relation (33) will be useful in
discussion of results presented later.

For the neo-Hookean model, a = 0 and (31) yields

y = Gii. (34)

Therefore, the shear response of a neo-Hookean material varies only with the square of the
longitudinal stretch 4, in the homogeneous state, It has the same form regardless of how
the initial deformation is produced. In the usual simple extension with stretch 4, = 4,
y = GAZ, as seen in (33).

In any event, for a Mooney-Rivlin material, the functions f(K) and g(K) in (26) and
28) are lincar in K. Recalling (25), we thus casily obtain from (27) the formula for creep
of a viscoclastic Mooney -Rivlin material in shear:

K(5) = K(l=¢ 7). (35)

Integration of (29) delivers the equation for recovery of a viscoclastic Mooney-Rivlin
material in shear:

K(t) = Ke ", (36)

In cither case, it is seen that 0 € K/K, < | for all K(2). The results (35) and (36) will be
discussed in turn. We begin with the creep relation (35).

Since y > 0, when the load is released tfrom its initial state (35) shows that the shear
deflection asymptotically approaches its ultimate equilibrium value K = K, as t — oo, which
was anticipated earlier. Theoretically, it tukes an infinitely long time to complete the creep
process. On the practical side, however, we neecd some measure of how fast the shear
deflection creeps to the final equilibrium state. The retardation time ¢, defined by

(37

"\
1
~ s

provides a measure of this property. By (35), the ratio K/K, at t = ¢, determines the constant
rctardation ratio

— = 1-¢"" %0632 (38)

This is a universal constant for all Mooney—Rivlin materials. Therefore, the retardation
time ¢, is the time during which the amount of shear attains 63.2% of its ultimate value in
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Fig. 2. Creep response of a viscoelustic Mooney-Rivlin material in a simple shear superimposed on
a pure homogencous strain.

an uninterrupted creep process from the homogencous state. The graph of (35) shown in
Fig. 2 is typical of the creep response in shear,

In principle, the values of K, and ¢, may be found by experiment. We supposc that K(1)
is measured in a shear experiment in which the value of K, is obtained as the ultimate
amount of shear. Then the ratio y/n = 1/t, may be read from the slope of the semilog
plot of test data for y(¢) = log (1 = K/K,)) = —1/1,.

It is evident in (37) that the retardation time varies inversely with the shear response
y. In a primary uniaxial deformation of the shear blocks, for example, (33) shows that y
increases in a simple tension with stretch 4, > | and decreases in a compression with 4, < 1.
We suppose, of course, that the latter is a stable equilibrium configuration. Therefore, as
shown in Fig. 3, the retardation time may be decreased by prestretching the blocks in

N

Retardotion Time Rotio; |,/tI

Primary Unioxial Stretch; Aas Aq

Fig. 3. Retardation time ratio «,/¢, as a function of the stretch 4, in a primary simple extension of
the shear blocks for three values of the Mooney-Rivlin parameter 2. The graph for x = 0, however,
is valid for an arbitrary homogencous deformation of a neo-Hookean material.
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Fig. 4. Recovery response of a viscoelastic Mooney-Rivlin material in a simple shear superimposed
on a pure homogeneous deformation.

tension and increased by their compression : that is, creep occurs more quickly when the
blocks are prestretched, more slowly when precompressed. In the unstretched case with
A, =1, the retardation time in creep from the natural state is a constant ¢, = ¢, = y/G
independent of a. In general, the retardation time (37) is a monotone decreasing function
of 4,& (0, w) for cach a. It grows indefinitely large when 4, = 0 and becomes very small
when 4, = 20, as shown in Fig. 3. The variation of the retardation time curves for a few
values of 2 also are mapped in Fig. 3. The case a = 0 desceribes the neo-Hookean model.
One sees, however, that these curves are relatively insensitive to variations of a € [0, c0), the
usual value being smaller than 1. Precisely, for a = o0, ,/t, = /', whereas for a = 0,
6/t =4 ;and fora = 1, ¢,/t, = 2/[A.(A,+ 1)]. Moreover, for neo-Hookean shear mounts
subjected to an arbitrary homogeneous strain, ¢,/t, = 47 °, follows from (34) and (37).
Thus, the curve for & = 0 in Fig. 3 is valid more generally for an arbitrary axial stretch 4,
in the predeformed state of a viscoclastic neo-Hookean material. This important practical
example thus shows that an initial longitudinal stretch 4, plays a more significant role
than the material constant « in the variation of the retardation time and in the physical
characterization of their effects in creep.

The graph of (36) in Fig. 4 shows the response typical of recovery in shear. The
recovery starts from the ultimate shear K, when the shear stress 1, is suddenly removed.
In this case, the amount of shear K(r) approaches the unsheared, homogencous state
asymptotically as r — «. It can be shown that the retardation time (37) is the time during
which the shear recovers by 63.2% from its ultimate value in an uninterrupted recovery
process. Said differently, ¢, is the time for the shear to recover to within 36.8% of its null
valuc. The recovery ratio K(1,)/K, = ¢ ' = 0.368 given by (36) is a universal constant for
all Mooncey-Rivlin materials. For recovery, the dependence of the retardation time on 4,
and « is exactly the same as shown in Fig. 3 for creep. Hence, as before, the retardation
time in the recovery process is decreased by extension of the blocks and increased by their
contraction, which otherwisc we suppose is stable. This means that recovery of the load
supported by springs under tension always is faster than recovery when they are compressed.

This completes our study of the creep and recovery propertics of a viscoelastic Mooney-
Rivlin material in a simple shear superimposed on a primary homogeneous deformation.
We next consider viscoelastic effects in the vibration problem of the shearing oscillator
shown in Fig. 1.
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5. FINITE AMPLITUDE VIBRATIONS OF THE SHEARING OSCILLATOR

In this section, the finite amplitude. damped, free vibration of a load supported
symmetrically betweeen identical viscoelastic shear mountings subjected initially to the
same homogeneous deformation will be investigated. The equation of motion is formulated
for an incompressible. isotropic viscoelastic material of general type (5). Afterwards, the
problem is solved exactly for a viscoelastic Mooney-Rivlin material. Some results for
nonlinearly elastic solids are discussed at the end.

To begin, we note that the engineering stress S on an incompressible material is
determined by S = TF~7 (Beatty, 1987). Hence, with the use of (14). the engineering shear
stress S, at the shear block interface with the load is given by S|, = T,/4,. in which we
recall (22). Also, use of (13) gives the acceleration ¥ = AZLI'(' of the interface identified by
Y = L in the natural state where its area is 4. As usual, the inertia of the shear blocks
themselves will be ignored. We shall assume that the quasi-static shear stress at the bonded
load interface approximates the shear stress in the dynamical problem. Of course, in view
of the symmetry, the normal tractions exerted on M by the shear blocks are balanced at
all times. Hence, with reference to the system in Fig. 1, the general nonlinear equation of
motion for a load M supported symmetrically by incompressible, isotropic viscoelastic
shear mountings is given by

.. 2.4'] 7.4 - g"

wherein we recall (23) and write ¢* = ¢ sin 0 for the gravitational acceleration component.
In a motion of M on a smooth horizontal surface, we sct g* = 0 in (39). In cither casc, the
nature of the differential equation (39) will depend on the form of the shear responsc
function. We thus turn to a particular example,

S.1. Damped vibrations on viscoclastic Mooney- Rivlin springs

The shear response function for a Mooney-Rivlin material is & constant given in (31).
Hence, the differential equation (39) for the finite amplitude motion of a shearing oscillator
simplifies to the familiar equation for a lincar damped oscillator :

L 24n . 24y g*
Kt - 5K+ ——5K=—.
U VI TR VTS L S (40)
[t is seen that the ultimate equilibrium position K, obtained from (40) is
, ML . g
K, =p 5220 with p=
=P T with p i, 41)

For our Mooney-Rivlin model, this equilibrium equation is equivalent to (25) ; it identifies
in specific terms the ultimate amount of shear in the quasi-static creep and recovery solutions
(35) and (36). Using the first relation in (41) to eliminate the mass from (40), we obtain
the equation for the damped, free vibrational motion of our Mooney-Rivlin shearing
oscillator in the form

K+2vk+win =0, 42)

wherein

k() = K(n-K,, =p’ 7\— =w', o's

- (43)

,_kl.u,_,

and ¢, is the retardation time (37). From (41),, we identify p = g*/L. We shall suppose
that K, # 0, i.e. g* # 0. The case when K, = 0 is treated separately later on.
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Fig. 5. Universal undamped, free vibrational frequency ratio as a function of 4, and K, for
viscoclastic Mooney-Rivlin shear mountings subjected initially to an isochorie, homogencous
deformation.

The nature of the solution of (42) will depend on the undamped, free vibrational
frequency  and the damping cocflicient v defined in (43). Both are functions of the primary
detormation of the shear blocks and the ultimate shear deflection. So before we discuss the
solution of (42), the damping and frequency terms in (43) will be examined.

5.1 Freguency and damping ratios for Mooney-Rivlin springs. The last expression in
(43) reveals that the frequency ratio w/p is a universal relation for all viscoclastic Mooney -
Rivlin shear mountings. For a tixed homogencous state, the ratio is determined strictly by
the amount of the static shear deflection. Hencee, test data for the undamped, free vibrational
frequency of a simple shearing oscillator do not distinguish one Mooney-Rivlin shear spring
from any other having the sume shear deflection. The frequency ratio w/p, is 4 monotone
decreasing function of both 4, and K. Hence, an increasc in either static deformation of
the springs lowers the frequency ; a decrease of either will increase it; and for small K, w
may be very large. This universal frequency response is itlustrated in the three-dimensional
surface plot in Fig. 5. Although the diagram shows a wide range for K, since K = tan o,
where  is the angle of shear shown in Fig. |, it is clear that in practical cases K, < 3;5
(¢ < 307), say. Of course, the possibility of larger values is not excluded.

Returning to the second relution in (43), we find by use of (31) und (37) the damping
ratio for our viscoclistic Mooney-Rivlin oscillator :

| 4+ 2
V- +2 with 2v, = "é’“ (44)
Vi

Vo - ":ng(] +a;~§)
Thus, for a given homogencous state, the damping ratio decreases as K, increases under
the load. It is seen that in every shearing motion from the natural state with 4, = |, (44)
yiclds the universal damping ratio

v | 45)
vy T K
Further, when the primary deformation is induced by uniaxial loading with stretch i, = 4.,
we may recall (32) and (33) and thus note that the damping ratio (44) is decreased by
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Fig. 6. Dumping ratio as a function of 4, and K, for viscoclastic Mooney-Rivlin shear mountings
for the case 2 = | and subjected initially to an isochoric, simple extension.

pretension and increased by precompression. Also, in this case, the dependence on 2 in
(43), is determined by ¢, in accordance with Fig. 3; hence, we may expect no great vartation
of damping with «. In general, for a tixed clongation, the damping ratio will increase with
a; for a fixed compression, it will decrease when ais increased. The damping ratio provided
by (44) under a primary uniaxial loading is shown in Fig. 6 fora = 1.

Finally, we see from (44) that with o = 0 the damping ratio for nco-Hookean springs
is given by the universal relation

= (46)

valid for any primary isochoric, homogencous deformation of the shear blocks. Thus, the
damping decreases significantly with increasing extensional stretch, and grows greater with
increasing compression. We next consider the appropriate solution of (42).

5.1.2. Description of the damped vibrational motion. The general solution of (42) is well-
known. Since the dumping cocflicient v and the undamped, free vibrational frequency w in
(43) are positive, the solution of (42) is asymptotically stable at K = K, for all physically
possible initial data. If v > w, that is, with (37) and (43),, if

n>2=, 47

w

the motion is hcavily damped. The relation (47) simply indicates that a heavily damped
motion is possible only when the material viscosity n is sufficiently large, which is intuitively
natural. When the inequality in (47) is replaced by equality, the system is critically damped
and we write n = n* and v = v*, where
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=27 (48)
w

*

Vi=w,

The solution of (42) in the heavily damped case is given by

k(1) = K(t) — K, = e ""(de”' + Be ™), (49)
in which
(= vi-w. (50)

And for the critically damped case, we have
k(1) = K(t)—K, = (A+ Bt)e™™". (51

The constants 4 and 8 in (49) and (51) are determined by the initial data, as usual.

Whether either of the over-damped solutions (49) or (51) may hold will depend upon
the extent of the primary deformation of the shear mounts, in addition to the nature of the
material constants. [f the homogencous state is an isochoric, simple extension so that (33)
applies, for example, we sce from (48) and the last relation in (43) that upon increasing the
stretch 4, by tension, or by increasing the static shear deflection K, the critical number y*
in (48) will increase, (47) may then fail to hold, and hence a heavily damped motion s less
likely to occur, On the other hand, damping of the system may be effectively increased by
suflicient compressional deformation to reduce the shear response in (33) and hence also
the critical number in (48). In this casc, (47) might hold.

We shall now consider the oscillatory motion of the load with light damping so that
the v is small compared with . Then the solution to (42) may be written as

K= K=—K, = Que " sin[mi+d,]. (52)
wherein the damped circular frequency o, is defined by

wy = \/w:—:'\;j. (53)

and @, and ¢, are real constants determined by assigned initial conditions. We sce from
(52) that if the load pusses the position k = 0 in a given direction at time ¢y, it will pass
x = 0 in the sume direction at time 7,4+ 2n/w,. Although the motion is not periodic, the time
7 defined by

2
r=" (54)

wy

usually is called the period of the lightly dumped motion. Thus, the lightly damped, finite
amplitude motion of a load M supported by viscoelastic Mooney-Rivlin shear springs is a
harmonic, but nonperiodic oscillatory motion with damped circular frequency (53) and
having an exponentially decreasing amplitude ending at the static shear deflection K|, the
center of the oscillations.

The rate of the amplitude decay usually is measured by the logarithmic decrement &
which is given by

: 2 2nv
5= log S 22T (55)

Kiva Gy ﬁ;z—v:

where x;(¢1) and x;, (¢+1) are two successive amplitudes of the motion (52). When v is
small compared with w, d = 2nv/w. Hence. by (43). (31), and (37). we have approximately
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ron mpan(l+2)

é = nwt, = — .
TG+ JK,

(36)

We see that J varies inversely with the deformation of the shear blocks. If § is measured in
the usual manner from the amplitudes of the damped response curve in a free vibration of
the system. it is seen that (56). or similar relations of this kind. provide a means to determine
the viscosity coefficient 77, or the ratio n/y. for example, when the other data may be known.
We note that J also is a measure of the amount of energy dissipated in each cycle of the
decaying motion ; however, we leave discussion of this matter for another time.

We recall that the solution for the viscoelastic neo-Hookean model is the special case
for which x = 0 everywhere above. In particular. for the neo-Hookean material. we have
from (56),

5= bl (57)

Gii* /K,

Thus, by increasing 4; in an arbitrary, primary homogeneous deformation of the springs,
or by increasing K,. the lightly damped motion of the neo-Hookean oscillator is made more
lively. the amplitude decays more slowly. The amplitude decays more rapidly, when the
blocks are initially compressed.

We notice also that if the shear blocks of a Mooney-Rivlin oscillator are assembled
without primary deformation, (31) yields y = G. Therefore, in this case, nonc of the fore-
going relations will depend on the Mooney-Rivlin parameter . Hence, the viscoelastic
vibrational effects on the motion of a load supported by initially undeformed Mooncy-
Riviin springs with moduli G and 5 cannot be distinguished from those for neo-Hookean
springs of the same design and having the same two material constants. In (56), for example,
the logarithmic decrement for lightly damped motions of a load on initially undeformed
Mooney -Rivlin springs is given by

5= "ol
G /K,

which is exactly the same as the general rule (57) when 4, = |
Morcover, for a primary uniaxial stress, we have seen earlier in Fig. 3 that if 4, # 1,

an increase in x at a fixed stretch results in an increase in the retardation time in a primary

simple tension, and a decreuse in compression. Hence, § in (56) increases with a in a given

simple tension. For a fixed clongation of the springs, therefore, an increase in « leads to an

effective increase in the damping, as described earlier. An increase in @ when the springs

are under a given initial compression, as seen from Fig. 3, has the opposite, possibly greater,

effect in reducing the effective damping. We next examine the case when K, = 0.

(58)

5.1.3. Motion on a smooth horizontal surface. The motion of the load M on a smooth
horizontal surface is described by (40) in which g* = 0; and hence the static equilibrium
shear deflection is K, = 0. In this casc. the motion is governed by (42) in which v = K and
the damping cocflicient v and undamped frequency o are defined by

5
v = 241

1 %AY(;":'.,’}?
ML -

MLiE (59

. W

rars)
Y e

The trivial equilibrium condition cannot be used to remove the load from (59) ; but we still
have 2v = ,. Since v and w are positive, the motion is asymptotically stable at K, = 0 for
all physically possible initial data. If (48) and (49) may hold, the motion is over-damped
and the solution with K, = 0 is given by (50) and (51). respectively. Otherwise, the motion
is lightly damped and the solution is given by (52) with K, = 0. The effect of the primary
homogeneous deformation on the damping and the logarithmic decrement is similar to the
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previous case. Hence. in each instance, the horizontal motion begins from an assigned initial
state and ultimately comes to rest in the primary equilibrium state where K, = 0. How it
does this is determined. not only by the material constants, but also by the nature of the
initial static deformation of the springs.

This concludes our study of the free vibrations of a load supported symmetrically by
viscoelastic shear mountings. Some further results for shear and other deformations of
isotropic viscoelastic materials in the class (5) will be presented in future papers. We end
our work here with a brief mention of the general solution possible for perfectly elastic
shear springs.

5.2. Free vibrations on nonlinearly elastic shear mountings
For the undamped. perfectly elastic case when # = 0, (39) may be readily integrated
to obtain the energy integral

. . 24 K q,.. 1.2
=+|Ki- i1 AL KDY dK + (K-
K= *|Kj ML s (A7 45, K- ) dK +L»’.:(K KO)] . (60)

where K(0) = K, and K(0) = K. A second integration yields the travel time

= Jkd_[\, (61)
T KK

These equations have been applied by Beatty (1984, 1988) 10 study shearing oscillations
of the load from the natural state of isotropic elastic shear mountings, However, the current
formulation admits an arbitrary homogencous deformation of the shear blocks.
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